Facile electronic communication between bimetallic termini bridged by elemental carbon chains

Tong Ren,* Gang Zou and Julio C. Alvarez

Department of Chemistry and Center for Supramolecular Science, University of Miami, Coral Gables, FL 33124 USA. E-mail: tren@miami.edu

Received (in Columbia, MO, USA) 4th April 2000, Accepted 23rd May 2000

Rich electrochemistry and strong electronic couplings across the carbon bridges are revealed for compounds composed of two tetra(μ -*N,N'*-2-anilinopyridinate)diruthenium(π , π) **termini bridged by either butadiynediyl (1) or ethynediyl (2) ligands.**

The proposal of constructing molecular wires from linear arrays of covalently-linked metal-complexes (M) and elemental carbon chain (C*m*) has been inspired by the pioneering work of Nast¹ and Hagihara.² Extensive electronic delocalization along the $-(M-C_m)_∞ -$ backbone holds the promise for new generation electronic and optoelectronic materials.3 Much of the work during this decade has focused on the M–C*m*–M type molecular compounds.4,5 The degree of delocalization between two equivalent termini M is gauged by the comproportionation constant K_{com} for the following equilibrium:

$$
[M - C_m - M] + [M - C_m - M]^{2+} \xleftarrow{K_{con}} 2[M - C_m - M]^+ \quad (1)
$$

 K_{com} (= exp{ $F[E_{1/2}(2+/1+)-E_{1/2}(1+/0)]/RT$ }) can be computed from the electrode potentials $E_{1/2}(2+/1+)$ and $E_{1/2}(1+/0)$.⁶ Significant delocalization along the C_m -bridge $(K_{com}$ *ca.* $10^{8}-10^{12}$) has been achieved with termini of CpFe(P–P),⁷ $CpRe(P)(NO)$,⁸ $CpRu(P)_2$ ⁹ and $Mn(P-P)_2$ ¹⁰ (P and P-P are mono- and bi-dentate phosphines, respectively), all mononuclear transition metal complexes. We report the first examples of capping elemental carbon chains $(C_2$ and C_4) with a bimetallic terminus, $\left[\text{Ru}_{2}(\mu\text{-ap})_{4}\right]^{+}$ (ap = 2-anilinopyridinate), which is the valence-averaged (not mix-valence!) diruthenium species with a 2.5 Ru-Ru bond order.^{11,12}

It has been established that the mono-capped complexes $[Ru_2]$ (C \equiv CR) (3) with R as Ph, H (3a), \hat{S} iMe₃ (3a) and CH2OCH3 (**3c**) can be obtained from the transmetalation reaction between [Ru₂]Cl and LiC=CR.^{12,13} Similarly, treating $[Ru_2]$ Cl with either 0.5 equiv. of LiC=CC=CLi or 1 equiv. of LiC=CLi yields **1** and **2**, respectively.† Formulation of $(C=C)_{n}$ -

$$
[Ru_2] \leftarrow \frac{1}{\sqrt{2\pi}} [Ru_2] \quad 1 \quad n = 2; \quad 2 \quad n = 1
$$

$$
[Ru_3] \leftarrow \frac{1}{\sqrt{2\pi}} [Ru_2] \quad 3 \quad [Ru_2] = [Ru_2(ap)_4]^+
$$

bridged dimers was established by both the elemental analysis and FAB-mass spectrometry.[†] Further confirmation of $(C=^c)_n$ bridging structural motif is provided by an X-ray diffraction study of molecule **1**.‡ Asymmetric unit of the crystal **1** contains the halves of two independent molecules, and each is related to the other half *via* a crystallographic inversion center. Metric parameters of the two independent molecules are very similar, and the structural plot of one of them is presented in Fig. 1, where a linear array formed by the bridging C_4 -chain and two $[Ru₂]$ termini is clear.

Compared with $\text{[Ru}_2\text{]}\text{C}\equiv\text{CSiMe}_3\text{)}$ (3b),¹³ the 'half' molecule of **1**, the coordination geometry of the 2-anilionopyridinates around the Ru_2 core in **1** is essentially unchanged as evidenced by the averaged $Ru(n)$ –N and $Ru(m)$ –N bond lengths 2.050 and 2.095 Å in **1**, and 2.046 and 2.096 Å in **3b**. Room temperature effective magnetic moments of **1** and **2** are respectively 4.2 and

Fig. 1 ORTEP of **1** at 20% probability level. Selected bond lengths and angles: Ru(1)–C(91), 2.047(14) Å; C(91)–C(92), 1.258(16) Å; C(92)– C(92A), 1.33(2) Å; Ru(1)–Ru(2), 2.3311(15) Å; Ru(2)–Ru(1)–C(91), 179.5(4)°; Ru(1)–C(91)–C(92), 177.8(12)°; C(91)–C(92)–C(92A), $176.1(19)$ °.

3.8 μ _B per [Ru₂], indicating a *S* = 3/2 ground state that has been observed for many $Ru_2(II,III)$ compounds including **3** and [Ru2]Cl.11–13 Hence, the termini of both **1** and **2** are globally isoelectronic with **3** and [Ru₂]Cl. Some small but notable differences, however, do exist between **1** and **3b**: the Ru–Ru (2.331(2) Å) and $C_{\alpha} \equiv C_{\beta}$ (1.258(16) Å) distances in **1** are elongated from that of **3b** (2.3162(5) and 1.207(6) Å), while the Ru–C_{α} distance is shortened (2.047(14) Å in **1** and 2.077(4) Å in **3b**). The C_{β}–C_{β}' (\equiv C–C \equiv) distance, 1.33(2) Å, is identical to that found for the highly delocalized $[Mn(dmpe)_2I]_2(\mu-C_4)$,¹⁰ but shorter than 1.367[9] Å found for *trans*-[Pt(PPh₃)₂Cl]₂(μ - C_8), a molecule lacking delocalization.¹⁴ Although barely significant, all these changes are consistent with the strengthening of the Ru–C π interaction and concurrent weakening of the $\pi(C=C)$ bond. The valence structure of the $\lceil Ru_2\rceil_2(u-C_4)$ backbone may contain a significant contribution of cumulenic resonance structure **B** in addition to the predominant resonance structure **A** depicting the localized carbon–carbon triple bonds.

$$
Ru_2 \xrightarrow{+} (c \equiv c)_{n} Ru_2 \xrightarrow{+} Ru_2 \xleftarrow{+} (c = c)_{n} Ru_2
$$

Cyclic voltammograms (CV) of **3** indicate two quasireversible redox processes (CV for **3a** shown in Fig. 2): an oxidation $(3a+/3a)$ around 462 mV and a reduction $(3a/3a)$ around -873 mV and an irreversible couple at more positive potential (*ca.* 1300 mV). Upon a change from simple axial coordination of C \equiv CR to $(C = \hat{C})_n$ -bridge, both **1** and **2** undergo four quasireversible and one irreversible one-electron redox processes between -1600 and $+1200$ mV (Fig. 2). Therefore, there are six accessible oxidation states in both molecules **1** and **2**, surpassing the record of five established for $[CpRu(P)₂]₂(\mu-C₄).⁹$

Based on the established electrochemistry of **3**,13 the quasireversible redox couples in both **1** and **2** can be unambiguously assigned as:

$$
[Ru_{2}]_{2}^{2-} \stackrel{I}{\longrightarrow} [Ru_{2}]_{2}^{-} \stackrel{II}{\longrightarrow} [Ru_{2}]_{2} \stackrel{III}{\longrightarrow} [Ru_{2}]_{2}^{+} \stackrel{IV}{\longrightarrow} [Ru_{2}]_{2}^{2+}
$$

Redox couples I and II correspond to the one electron reduction couple in **3**, and III and IV correspond to the oxidation couple in **3**. $\Delta E_{1/2}$ (II/I) and $\Delta E_{1/2}$ (IV/III), the differences in electrode

Fig. 2 Cyclic voltammograms of compounds **1**, **2** and **3a** recorded at a scan rate of 100 mV/s in 0.20 M (Bun)₄NPF₆ solution (THF, N₂-degassed) on a BAS CV-100W voltammetric analyzer with a glassy carbon working electrode, a Pt-wire auxiliary electrodes, and a Ag/AgCl reference electrode.

potentials, are respectively 389 and 157 mV in **1**, and 667 and 285 mV in **2**, which are undoubtedly the result of strong electronic coupling between two $\lceil Ru_2 \rceil$ termini mediated by the $(C\equiv C)_n$ -bridges. Corresponding comproportionation constants $K_{\text{com}}(\text{red})$ and $K_{\text{com}}(\text{ox})$ are 3.8 \times 10⁶ and 506 for **1**, and 1.9 \times 10¹¹ and 6.6 \times 10⁴ for **2**, and *K*_{com}(red) for **2** is comparable to the largest K_{com} determined for other $(C \equiv C)_n$ -bridged complexes with CpFe(P–P) (1.6×10^{12}) ,7 CpRe(P)(NO) $(1.1 \times$ 109),⁸ CpRu(P)₂ (1.5 \times 10¹¹),⁹ and Mn(P–P)₂I (5.4 \times 10¹⁰)¹⁰ termini. Distance-dependence of the coupling is evident: K_{com} of C4-bridged **1** is several orders of magnitude smaller than that of C_2 -bridged 2. Furthermore, K_{com} (red) is much larger than $K_{\text{com}}(\text{ox})$ in the same molecule, indicating that the Ru–C π bonding is much stronger in the reduced form than in the oxidized form. Both linear and square arrays of bimetallic units covalently linked by dicarboxylates have been reported recently,¹⁵ and K_{com} as high as 1.3×10^{12} was determined for $[W_2(O_2C \cdot Bu)_3]_2(\mu$ -oxalate).

Effect of electronic delocalization over the C*m*-bridge is also evident from the UV–VIS–NIR spectra (Fig. 3). The 'half' molecule **3a** absorbs strongly at 465 (**A**) and 745 nm (**B**), which may be respectively attributed to $\sigma(Ru-C)$ to $\delta^*(Ru_2)$ and $\pi(Ru_2)$ to $\pi^*(Ru-N)$ transitions in analogy to the case of Ru2(O2CR)4Cl.16 Upon establishing the C*^m* bridge, each band is 'split' into two intensified bands (A1 and A2; B1 and B2), and the emergence of bands A2 and B2 accounts for the color change from the dark green for all $Ru_2(ap)_4(C\equiv CR)$ species^{12,13} to the dark blue and red–purple colors for **1** and **2**, respectively. Clearly, the strong electronic coupling across the \bar{C}_m bridge results in a significant orbital mixing between two $[Ru_2]$

Fig. 3 UV–VIS spectra of compounds **1** (dash), **2** (solid) and **3a** (dot) recorded in THF.

termini. The energy splitting of either the ground state or the excited state due to the mixing is sufficiently large that each of transitions **A** and **B** evolves into two bands.

The unprecedented number of accessible oxidation states in a C*m*-bridged complex discovered for **1** and **2** clearly demonstrates the advantage of using bimetallic units as terminal electron reservoirs in constructing molecular conductors. The presence of multiple reversible redox couples in **1** and **2** may furthermore allow access to both the anionic (*e.g.* 1^- and 1^{2-}) and cationic derivatives $(1^+$ and $1^{2+})$. Isolations of these derivatives and the analogs with longer C*^m* bridges are being explored in our laboratory.

Generous support from the University of Miami (Start-up fund, CCD-diffractometer fund, and General Research Award) is gratefully acknowledged. We also thank Professor A. Kaifer for the access of electrochemical apparatus.

Notes and references

 \dagger **1** and **2** were obtained by treating Ru₂(ap)₄Cl with either LiCCCCLi (0.6 equiv.) or LiCCLi (1 equiv.) in THF at room temperature for 12 h under argon. After the mixture was washed with brine, the solvent was removed from the organic layer to yield a purple solid. Residual starting material was removed *via* rinsing with CH_2Cl_2 till the washings became colorless. Recrystallization in THF yield dark purple microcrystalline solids (53% for **1** and 42% for **2**). Compound **1**: Anal. for C92H72N16Ru4, Found (calcd.): C, 61.24 (61.18); H, 4.06 (4.02); N, 12.37(12.41); MS-FAB (*m/z*, based on ¹⁰¹Ru): 1808 [M⁺]. UV–VIS in THF λ , nm (ε/M^{-1} cm⁻¹): 467(sh), 578(31 900), 757(16 100), 910(sh). CV data $(E_{1/2}(mV)/\Delta E_p(mV)/i_{pa}/i_{pc})$): I, 21173/61/0.94; II, 2784/64/1.10; III, 334/59/1.65; IV, 491/63/0.66; third oxidation, 1115/71/4.72. Compound 2: Anal. for $C_{90}H_{72}N_{16}Ru_4$, Found (calcd.): C, 60.64 (60.66); H, 4.05 (4.07); N, 12.35 (12.58). MS-FAB (*m/z*, based on ¹⁰¹Ru): 1784 [M⁺]. UV–VIS in THF λ , nm (ε/M^{-1} cm⁻¹): 465(sh), 558(33 000), 743(17 900), 892(13 500). Cyclic voltammetry data $(E_{1/2}(mV)/\Delta E_p(mV)/(i_{pa}/i_{pc}))$: I, $-1555/75/1.97$; II, $-888/57/1.142$; III, 223/58/1.22; IV, 508/78/1.45; third oxidation, 1079/63/5.40.

‡ *Crystal data* for **1**·8H2O: C92H88N16O8Ru4, *M* = 1933.94, triclinic, *P*¯1, *a* μ = 10.0838(17), *b* = 20.023(3), *c* = 22.504(4) Å, α = 95.518(3), β = 95.250(3), $\gamma = 93.827(4)$ °, $U = 4490.7(13) \text{ Å}^3$, $Z = 2$, $\mu(\text{MoK}\alpha) = 0.723$ mm⁻¹, *T* = 300 K, 19970 reflections measured, 12401 unique (R_{int} = 0.0696), final *R*1 = 0.075, w*R*2 = 0.159. CCDC 182/1662. See http:/ /www.rsc.org/suppdata/cc/b0/b002777o/ for crystallographic files in .cif fomat.

- 1 R. Nast, *Coord. Chem. Rev.*, 1982, **47**, 89.
- 2 N. Hagihara, K. Sonogashira and S. Takahashi, *Adv. Polym. Sci.*, 1980, **40**, 149.
- 3 R. P. Kingsborough and T. M. Swager, *Prog. Inorg. Chem.*, 1999, **48**, 123.
- 4 For recent reveiws/perspectives: (*a*) M. H. Chisholm, *Angew. Chem., Int. Ed. Engl.*, 1991, **30**, 673; (*b*) H. Lang, *Angew. Chem., Int. Ed. Engl.*, 1994, **33**, 547; (*c*) U. H. F. Bunz, *Angew. Chem., Int. Ed. Engl.*, 1996, **35**, 969; (*d*) F. Paul and C. Lapinte, *Coord. Chem. Rev.*, 1998, **178**–**180**, 431.
- 5 R. E. Martin and F. Diederich, *Angew. Chem., Int. Ed.*, 1999, **38**, 1350.
- 6 C. Creutz, *Prog. Inorg. Chem.*, 1983, **30**, 1.
- 7 N. Le Narvor, L. Toupet and C. Lapinte, *J. Am. Chem. Soc.*, 1995, **117**, 7129.
- 8 M. Brady, W. Weng, Y. Zou, J. W. Seyler, A. J. Amoroso, A. M. Arif, M. Bohme, G. Frenking and J. A. Gladysz, *J. Am. Chem. Soc.*, 1997, **119**, 775.
- 9 M. I. Bruce, L. I. Denisovich, P. J. Low, S. M. Peregudova and N. A. Ustynyuk, *Mendeleev Commun.*, 1996, 200.
- 10 S. Kheradmandan, K. Heinze, H. W. Schmalle and H. Berke, *Angew. Chem., Int. Ed.*, 1999, **38**, 2270.
- 11 F. A. Cotton and R. A. Walton, *Multiple Bonds between Metal Atoms*, Oxford University Press, Oxford, 1993.
- 12 A. R. Chakravarty and R. A. Cotton, *Inorg. Chim. Acta*, 1986, **113**, 19.
- 13 G. Zou, J. C. Alvarez and T. Ren, *J. Organomet. Chem.*, 2000, **596**, 152.
- 14 T. P. Peters, J. C. Bohling, A. M. Arif and J. A. Gladysz, *Organometallics*, 1999, **18**, 3261.
- 15 (*a*) R. H. Cayton, M. H. Chisholm, J. C. Huffman and E. B. Lobkovsky, *J. Am. Chem. Soc.*, 1991, **113**, 8709; (*b*) F. A. Cotton, L. M. Daniels, C. Lin and C. A. Murillo, *J. Am. Chem. Soc.*, 1998, **121**, 4538.
- 16 V. M. Miskowski and H. B. Gray, *Inorg. Chem.*, 1988, **27**, 2501.